

Szepesi Tamás

Tavaly volt:

2006. január 6.

Tartalom

- 1. Az instabilitások osztályozása (egy lehetséges mód)
 - streaming
 - Rayleigh-Taylor
 - általános
 - kinetikus
- 2. A Rayleigh-Taylor ("gravitációs") instabilitás
- 3. A "kink" instabilitás
- 4. Az ELM-ek
 - osztályozás (Zohm-féle)
 - fenomenológikus leírás
 - modellszámítások eredményei (vázlatosan)
 - következtetések

Plazmahullámok vizsgálatakor ideális körülmények (teljes egyensúly):

- Maxwell-féle sebességeloszlás
- a sűrűség és a mágneses tér egyenletes
- → a hullámokat *ki kell váltani* (külső hatás)

Az instabilitások vizsgálatához más körülmények kellenek:

- nem tökéletes a termodinamikai egyensúly (az entrópia nem maximális)

DE: az erők kiegyenlítettek és létezik időfüggetlen megoldás

- van szabad energia \rightarrow a hullámok külső hatás nélkül is *keletkeznek*
- a kialakuló instabilitás mindig közelebb viszi a rendszert az egyensúlyhoz (csökkenti a szabad energiát)
- 4 kategória a rendelkezésre álló energia (hajtóerő) alapján:

a.) streaming (áramló) instabilitás

- i.) nagy energiájú részecskenyaláb alakul ki a plazmában
- ii.) úgy hajtunk plazamáramot, hogy a különböző részecskék egymáshoz képest driftelnek

 \rightarrow a drift energia oszcillációs energiává alakul (hullámokat gerjeszt)

b.) Rayleigh-Taylor instabilitás

- a plazma nem uniform: pl. éles határok, sűrűség-gradiens
- külső, nem elektromágneses erőtér \rightarrow hajtóerő
- ismert példa: a ritkább folyadék sűrűbb folyadékot tart
 - \rightarrow bármilyen kis határfelületi hullám növekedni fog
 - végül a két folyadék helyet cserél (interchange instability)

c.) általános (universal) instabilitás

- az összetartás miatt nincs egyensúly (hiába nincs el.mágn. / grav. erőtér)
- nyomás \rightarrow tágulás során energianyereség \rightarrow ez elég (hajtóerő)
- d.) kinetikus instabilitás
- a sebességeloszlás nem maxwelli = egyensúlytól való eltérés
- az anizotrópia a hajtóerő
- példa: veszteségkúp-instabilitás (mágneses tükrös berendezésekben)
 - \rightarrow veszteségi kúp miatt kevés részecskének nagy $v_{_{\rm II}}$ / v_{\perp}
 - \rightarrow ez egy instabilitás kialakulásához vezet

- "könnyű folyadék" = mágneses tér
- "nehéz folyadék" = plazma
- görbült mágneses tér (pl. tokamak) → centrifugális erő (~gravitáció)

legegyszerűbb 2D eset: plazma határfelület az y-z síkban

- sűrűség-gradiens x irányban
- gravitációs erőtér +x irányban

 $0 = en_0 \mathbf{v}_0 \times \mathbf{B}_0 + Mn_0 \mathbf{g}$

- legyen $\mathbf{B}_{\mathbf{0}}$ állandó

- legyen
$$kT_i = kT_e = 0$$

forrás: Bateman

- az erőegyensúly ionokra:
$$Mn\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right] = qn\mathbf{v} \times \mathbf{B} - \nabla p + Mn\mathbf{g}$$

- a fenti feltevésekkel, egyensúlyban: $Mn_0(\mathbf{v_0} \cdot \nabla)\mathbf{v_0} = en_0\mathbf{v_0} \times \mathbf{B_0} + Mn_0\mathbf{g}$
- \rightarrow ha g = áll. \Rightarrow v_0 is állandó, ekkor:
- ebből fejezzük ki a drift sebességet!

2. A Rayleigh-Taylor (gravitációs) instabilitás

+

- a drift-sebesség ionokra: $\mathbf{v}_{\mathbf{0}} = \frac{M}{e} \frac{\mathbf{g} \times \mathbf{B}_0}{B_0^2} = -\frac{g}{\Omega_c} \hat{\mathbf{y}}$
- \rightarrow elektronokra elhanyagolható, mert $m/M \rightarrow 0$
- a felszínen kialakuló bármilyen hullám növekedni fog \mathbf{v}_0 miatt:

- a hullámok oldalán töltésfelhalmozódás
- $\rightarrow \text{kialakul} \ E_1$

- az $\mathbf{E}_1 \times \mathbf{B}$ drift növeli a hullám amplitúdóját

 $\rightarrow \text{linearizálás, a perturbált mozgásegyenlet (fluktuáló részek leválasztva):}$ $M(n_0 + n_1) \left[\frac{\partial}{\partial t} (\mathbf{v}_0 + \mathbf{v}_1) + (\mathbf{v}_0 + \mathbf{v}_1) \cdot \nabla (\mathbf{v}_0 + \mathbf{v}_1) \right] = e(n_0 + n_1) \left[\mathbf{E}_1 + (\mathbf{v}_0 + \mathbf{v}_1) \times \mathbf{B}_0 \right] + M(n_0 + n_1) \mathbf{g}$

- szorozzuk meg a perturbálatlan mozgásegyenletet $\frac{n_0 + n_1}{n_0}$ -lal $M(n_0 + n_1)(\mathbf{v}_0 \nabla \mathbf{v}_0) = e(n_0 + n_1)\mathbf{v}_0 \times \mathbf{B}_0 + M(n_0 + n_1)\mathbf{g}$

 \rightarrow a kettőt egymásból kivonva, elsőrendben:

$$Mn_0 \left[\frac{\partial \mathbf{v}_1}{\partial t} + (\mathbf{v}_0 \cdot \nabla) \mathbf{v}_1 \right] = en_0 \left[\mathbf{E}_1 + \mathbf{v}_1 \times \mathbf{B}_0 \right]$$

2. A Rayleigh-Taylor (gravitációs) instabilitás

- behelyettesítve a sebességeket, ionokra:
$$(\omega - kv_0)n_1 + i\frac{E_y}{B_0}\frac{\partial n_0}{\partial x} + ikn_0\frac{\omega - kv_0}{\Omega_c}\frac{E_y}{B_0} = 0$$

- elektronokra: $\omega n_1 + i\frac{E_y}{B_0}\frac{\partial n_0}{\partial x} \rightarrow \frac{E_y}{B_0} = \frac{i\omega n_1}{\partial_x n_0}$
 \rightarrow az ion-egyenletbe helyettesítve: $(\omega - kv_0)n_1 + \left(n'_0 + kn_0\frac{\omega - kv_0}{\Omega_c}\right)\frac{\omega n_1}{n'_0} = 0$
 $\frac{\partial n_0}{\partial x} \equiv n'_0$ $\omega - kv_0 - \left(1 + \frac{kn_0}{\Omega_c}\frac{\omega - kv_0}{n'_0}\right)\omega = 0$
 $\mathbf{v}_0 = \frac{M}{e}\frac{\mathbf{g} \times \mathbf{B}_0}{B_0^2} = -\frac{g}{\Omega_c}\hat{\mathbf{y}}$ $\omega - kv_0\omega - g(n'_0/n_0) = 0$
 \rightarrow másodfokú egyenletet kapunk: $\overline{\omega^2 - kv_0\omega - g(n'_0/n_0)} = 0$
 \rightarrow megoldásai: $\omega = \frac{1}{2}kv_0 \pm \left[\frac{1}{4}k^2v_0^2 + g(n'_0/n_0)\right]^{1/2}$
 \rightarrow instabilitás van, ha ω komplex, azaz $\frac{1}{4}k^2v_0^2 < -g(n'_0/n_0)$ ha k kicsi (nagy hullámhossz)

 $\rightarrow \omega$ valós része: $\frac{1}{2}kv_0$, és mivel v_0 ionsebesség, a frekvencia alacsony

 $\gamma = \text{Im}(\omega) \approx \sqrt{-gn'_0/n_0} \longrightarrow \mathbf{g}$ modellezi a mágneses erővonalak görbülését

 \rightarrow g előjele (a görbület előjele) határozza meg, hogy van-e instabilitás

• a plazma felé hajló erővonalak stabilizáló hatásúak, és fordítva

Az instabilitást "flute"-instabilitásnak (hornyolt) is szokás nevezni, mert hengeres geometriában egy görög oszlopra emlékeztet az alakja:

Érdekesség: pelletfelhők által kibocsátott fényintenzitás oszcillációjának

(striations) Parks-féle magyarázata

- 2D-modell (r,z)
- a felhő kiszélesedve ellipszis keresztmetszetű
- → a felhő "átlátszósága" (e⁻-okra) a szimm.tengelytől kifelé haladva csökken

→ a beeső elektronok nagyobb hányada nyelődik el a tengely mentén, mint a széleken

 \rightarrow a plazmához képesti potenciál-esés a felhő közepén: $\Phi_{\rm c}\!\sim\!kT_{\rm e}/e$

- \rightarrow *r*_b sugarú henger esetén: *E*_r \approx $\Phi_{\rm c}$ / *r*_b
- \rightarrow a felhő forgásba jön: $v_{\theta} = E_r / B = kT_e / (eBr_b) \rightarrow g = \frac{v_{\theta}^2}{r}$

- az ezzel ellentétes irányú sűrűség-gradiens instabilitáshoz vezet

 \Rightarrow m=1 módus: a felhő radiális irányban elmozdul \rightarrow a pellet árnyékolása megszűnik, megugrik az abláció (és új felhő alakul ki)

3. A "kink" instabilitás

Az MHD-instabilitásokról röviden

- két alapvető hajtóerő:

- 1. nyomásgradiens és a mágneses tér görbülete
 - \rightarrow "kicserélődéses" (interchange) inst.
 - → hasonló a Rayleigh-Taylor instabilitáshoz: a plazma bizonyos részei helyet akarnak cserélni egymással
 - → ált. nem erősen instabil jelenségekkel áll kapcsolatban, lokális (plazma belseje)
- 2. mágneses térrel párhuzamos áram
 - \rightarrow kink instabilitást okoz
 - \rightarrow a plazma erősen deformálódik (vákuumkamra falához ér...)

A valódi MHD-instabilitásoknak ált. többféle hajtóereje is van, a fenti kategóriák extrém esetekben érvényesek, és többnyire intuitívak, de szemléltetésre alkalmasak.

- hajtőerő: B-vel párhuzamos áram
- hengeres geometria, osztályzás poloidális módusszám alapján: $e^{im\theta}$
- <u>m = 0 sausage</u> (hurka-instabilitás)
 - $B_z = 0$ nincs longitudinális mágneses tér, de $j_z \rightarrow B_{pol}$
 - poloidálisan szimm. radiális perturbáció
 - $\rightarrow j_z$ nő az összeszűkült keresztmetszetben
 - \Rightarrow ez nagyobb B_{pol} -t indukál \Rightarrow jobban összeszorítja a plazmát
 - kivédhető longitudinális mágneses tér alkalmazásával
 - \rightarrow a plazmával együtt a teret is össze kellene sűríteni

<u>m = 1 kink módus</u> (kink mode)

- ${\bf B}$ homogén mágneses tér \rightarrow a plazma "dugóhúzó" alakot vesz fel
- két egyszerű modell
- 1. végtelen vékony plazmafonál
 - B_z mágneses tér, I áram; alapesetben I ll B_z, nincs erőhatás
 - spirális perturbáció \rightarrow az $I \ge \mathbf{B_z}$ erő a felületből kifelé hat, és tágítja a hengert (hajtóerő)

2. vastag plazmahenger + spirális perturbáció (keresztmetszet alakja változatlan)

Vizsgáljunk $\lambda/4$ távolságban lévő két keresztmetszetet!

a.) az erővonalak egymáshoz képest bezárt szöge (pol.) > 90° - piros vonal

 \rightarrow a perturbáció után a szög nagyobb! (zöld vonal)

 $\rightarrow B_{pol}$ megnőtt!

 \Rightarrow a mágneses nyomás is nagyobb, pont a belső oldalon \rightarrow tágulás

b.) ugyanezt <90°-ra megismételve azt kapjuk, hogy a

Kruskal-Shafranov kritérium

ELM = Edge Localised Mode

 \rightarrow H-módban, a plazma edge-ben tapasztalható MHD-instabilitások

általános jellemzők:

- gyors (~ms) részecske- és energiaveszteség az edge-régióban
- egy ELM alatt T_e a szeparátrixon kívül nő, belül csökken
- T_e a plazma magjában nem változik számottevően \leftarrow edge localised
- maga az ELM gyorsabb lefolyású (~ms), mint az ismétlődési frekvenciája (10-200Hz)
- ELM-mentes H-módokban a plazmasűrűség és a szennyezők koncentrációja is folyamatosan nő

↔ ELMy H-módok esetén a tárolt energia és a sűrűség adott értékre áll be

- → az ELM-mentes kisülésekben a sugárzásos hőleadás folyamatosan nő, míg végül P_{sep} ≤ P_{HL}, és a plazma L-módba esik vissza
- → ált. csak az ELMy H-módok válnak stacionáriussá (Zohm)

forrás: Zohm

Az ELM-ek csoportosítása (Zohm, felfedezés ideje szerint)

1. type I ELM

- az ELM-frekvencia (v_{ELM}) nő a fűtési teljesítménnyel (P_{tot})
- nincs észlelhető mágneses prekurzor (de: *T*_e-ben vannak változások)
- szélessávú mágneses és sűr. fluktuációk ELM előtt; alatta erősebb
- izolált, éles csúcsok a divertor-sugárzásban (D_{α})
- $\nabla p_{\text{edge}} \approx \text{stab. határ} (\alpha \approx \alpha_{\text{crit}})$
- 2. type II ELM
 - elnyújtott k.m.-ű DIII-D plazmákban (*csak itt!*), $v_{ELM} \leftrightarrow P_{tot}$? \rightarrow elhagyjuk
- 3. type III ELM
 - az ELM-frekvencia (v_{ELM}) csökken a fűtési teljesítménnyel (P_{tot}), de ált. inkább P_{tot}-P_{HL} a jellemző
 - észlelhető koherens mágneses prekurzor: $\nu \sim 50-70$ kHz \rightarrow tor. módusszám: n $\approx 5-10$, pol. módusszám: m $\approx 10-15$
 - edge nyomás: $0.3 \le \alpha / \alpha_{crit} \le 0.5$ (stabilitási határtól távol)

69105

forrás: Zohm

- a fűtéstől való tipikus függés:

Megfigyelések sok berendezésben:

(DIII-D, ASDEX, Alcator C-MOD, JET, Compass-D, JFT2-M, TCV, PBX-M, Wendelstein VII-AS)

- dithering cycles (bizonytalan H-mód)
 - \rightarrow L-H-L átmenetek @ $P_{sep} \approx P_{LH}$
 - → modell: H-mód instab. nélkül
 - $ightarrow \nu$ enyhén csökken ha $P_{\rm sep}$ nő
 - $\rightarrow P_{\text{sep}}$ a szignifikáns (és nem P_{tot})

- \rightarrow a köztes L-fázisban a turb. szint \geq normál L-módban, amikor $P_{sep} < P_{LH}$
- \rightarrow hasonlít a type III ELM-hez, de nincs mágn. prekurzor + alacsonyabb flukt. (EM, $n_{\rm e}$)
- type III ELM frekvenciatart.: 2 kHz (≈ 1/élettartam) 200Hz (álland. áll. ELMy H-mód)

15

Injected NBI Power (MW)

• type I ELM frekvenciatart.: 10-200 Hz

Az ELM-ek hatása a transzportra (Zohm)

- romlik a globális energia- és részecse-összetartási idő
 - DE: az ELM csak a plazma edge-ben hat
 - → drámaibban érinti a részecske-összetartást: forrás helye = veszteség helye (plazma széle) ↔ energiánál forrás többnyire a core, csak az edge-be transzp. E-ra hat
 - \Rightarrow sűrűség-manipuláció lehetséges $\tau_{\rm E}$ jelentős romlása nélkül!
- jól szeparált (individuális) ELM-ek: plazma részecskék és energia kb. 5-10%-át
 - \rightarrow type III ELM: frekvencia csökken \Rightarrow hatás jelentősebb
 - \rightarrow type I ELM: Δ E/ELM \approx áll. (nagy T-n)
- compound ELM (összetett ELM)
 - \rightarrow hatása sokkal drasztikusabb
 - \rightarrow élettartama hosszabb ~5-10 ms
 - \rightarrow ELM + átmeneti L-fázis

ELM-modellek

- transzportra való hatást csak nemlineáris analízissel \rightarrow ált. nincs elméleti levezetés

Type III ELM

- Kerner et al.
 - nemlineáris analízis hengeres geometriára
 - ha ∇j_{edge}, ∇p_{edge} elég nagy → egyes rezisztív interchange módusok nemlineáris, turbulens keveréke + kink instabilitás csatolódnak
 - ⇒ a külső fluxusfelületek gyors leválása, megsemmisülése = peeling mode

Huysmans

- + toroidális, plazma keresztmetszete (lin.)
- rezisztív ballooning (= rez. interch. hengeres) módusok n > 10 módusszám mellett instabilak, de lassú! → prekurzor
- \rightarrow meredekebbé teszik $j_{\rm edge}$ és $p_{\rm edge}$ profilokat
- \rightarrow egy alacsonyabb módusszámú instab-hoz csatolódva peeling módust alkotnak
- → lin. analízis: csak j_{edge} növelésével lesz elég gyors $\Rightarrow \nabla j_{edge}$ a fő hajtóerő!

forrás: Zohm

Manickam

- lin. kink stabilitási analízis, idealizált: fajl. ell. = 0
- j_{edge} a fő hajtóerő; az edge shear stabilizáló hatása dominál
- $\rightarrow j_{edge}$ felépül \Rightarrow kink instabil! (még akkor is, ha p_{plazma} = 0)
- véges abla p mellett: peeling módus vagy a módus kiterjed a plazma belseje felé

<u>Összegzés</u>

- a type III ELM rezisztív jelenség \leftrightarrow nagy $T_{\rm edge}$ stabilizáló hatású kísérletek alátámasztják
 - → frekvenciafüggés magyarázata!
 - két ELM közötti idő: amíg ∇p és ∇j felépül, elérik a stabilitási határt
 - rezisztív: $P_{tot} n \sigma \rightarrow T n \sigma$, stab. határ is n σ !
 - → a stabilizáló hatás felülkerekedik a hajtóerőn
 - \rightarrow ugyanezzel magyarázható Δ E/ELM függése is
- magasabb T_{edge} mellett eltűnik (rezisztív)
- bonyolult MHD-jelenség: magas módusszámú rezisztív instabilitások (pl. ballooning) és alacsony módusszámú kink-szerű instabilitások → peeling módusok

Type I ELM

- Gohil et al
 - lavina-modell: ∇p_{edge} mindig felépül $\alpha \approx \alpha_{crit}$ -ig (lin. ballooning analízis) \rightarrow ELM
 - → ideális ballooning módusok lavinaszerű megjelenése (diff.-nál gyorsabban haladnak)
- Manickam: ideális kink, nagy j_{edge}
 - \rightarrow kísérlet: E divertor belső elemeire \leftrightarrow ballooning LFS-en nagy amplitúdójú

<u>Összegzés</u>

- nincs mágn. prekurzor, de magasabb flukt. szint, T_e -oszcillációk \rightarrow nem tudjuk mérni? \rightarrow magasabb poloidális módusszám, mint gondoljuk
- magasabb *T*, mint a type III \rightarrow ideális MHD-jelenséggel kapcs. ($\alpha \approx \alpha_{crit}$)
 - → a frekvenciafüggés magyarázata: a fluxusfelületek geometriája javarészt megszabja ∇p_{edge} -t (stab. határ), *T*-től ~függetlenül

 \rightarrow ez magyarázza a Δ E/ELM függést is

- ellentmondás: DIII-D-ben α ≈ α_{crit} több 100ms-ig, de nem volt ELM → szükséges de nem elégséges (főleg kis berendezésekben)
- nincs modell a transzport felgyorsulására

Francis F. Chen: Introduction to Plasma Physics and Controlled Fusion

- Glenn Batemann: MHD Instabilities
- H. Zohm: Edge Localized Modes (Plasma Phys. Control. Fusion 36, 105-128.)
- P.B. **Parks**: Theory of Pellet Cloud Oscillation Striations (PPCF 38, 571-591.)